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A B S T R A C T
Machine learning models can assist clinicians and researchers in many tasks within radiology such
as diagnosis, triage, segmentation/measurement, and quality assurance. To better leverage machine
learning we have developed a platform that allows users to label data and train models without
requiring any programming knowledge. The technology stack consists of a TypeScript web application
running on .NET for user interaction, Python, PyTorch, and MONAI for machine learning, DICOM
WADO-RS to retrieve data from clinical systems, and Docker for model management. As a first trial
of the system, researchers used it to train a model for clavicle fracture detection as part of an IRB-
approved retrospective study. The researchers labeled 4,135 clavicle radiographs from 2,039 patients
across 13 sites. The platform automatically split the data into training, validation, and test sets and
trained a model until the validation loss plateaued. The system then returned a receiver operating
characteristic curve, AUC, F1, and other metrics. The resulting model identifies clavicle fractures with
90% sensitivity, 87% specificity, and 88% accuracy with an AUC of 0.95. This model performance is
equivalent to or better than similar models reported in the literature. More recently, our system was
used to train a model to identify if ultrasound frames that contain personally identifiable information
(PII). After validation, the model was used to help de-identify a large dataset that was to be used for
research. This first-of-its-kind system streamlines model development and deployment and opens up
an exciting new pathway for the use of AI within healthcare.

1. Introduction
The potential use-cases where artificial intelligence (AI)

models can bring value to healthcare continues to grow.
As of October 2023, the United States Food and Drug Ad-
ministration (FDA) has has approved 692 AI algorithms.[1]
However, this pace of AI adoption within healthcare has
been slow.[2] One cause of this is that hospitals are cost
strapped and still reeling from pandemic, and a tiny fraction
of FDA-approved AI devices are covered by insurance.[3] A
perhaps even bigger and more serious issue is that external
validations of AI algorithms often show substantial drops
in performance compared to what was originally reported in
the FDA submission.[4, 5, 6] This degradation is understood
to be caused by “distribution shift”.[7] Distribution shift may
be caused by differences in scanner type, image acquisition
protocols, or patient demographics. While multiple strate-
gies and techniques have been proposed to address the distri-
bution shift issue, the problem remains largely unsolved.[8]

Developing models in-house is an attractive proposition
for hospitals as they can use their own datasets for training,
which helps ameliorate the issue of distribution shift. The
current push towards internalizing AI model development
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is coming in time of maturing ML platforms. Advances in
graphical/tensor processing units (GPUs/TPUs) alongside
improved cloud computing infrastructure have reduced the
cost needed to train models. Mature software libraries such
as the Medical Open Network for Artificial Intelligence
(MONAI) and PyTorch make it easier than ever to train
machine learning (ML) models on medical imaging data.
Even so, code has to be written and choices have to be made
regarding data preprocessing, data augmentation, neural net-
work model architecture, model hyperparameter settings,
batch size, stopping criteria, and validation criteria. Thus,
the process of training ML models still requires the involve-
ment of specialized personnel with programming expertise
such as postdoctoral researchers, data scientists, or machine
learning engineers. With industry salaries increasing relative
to what healthcare systems can pay, finding staff to fill such
roles is becoming more and more of a challenge.[2]

Several no-code platforms for training ML models exist
from companies like Amazon, Apple, Calrifai, Google, and
Microsoft.[9] Some of these platforms have been tested on
publicly available medical imaging datasets.[9] However,
to our knowledge none of these platforms support DICOM
natively and they suffer from a lack of integration with
hospital IT infrastructure. To use such services images must
be pulled down, converted to image formats, and uploaded.
Even after a model has been developed it then has to be
packaged and integrated with clinical systems. It has been
our observation that the entire process of training, validating,
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Figure 1: Platform overview.
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and deploying a ML model within healthcare is very time-
consuming, involving coordination between many people
and a complicated juggling of code and data across multiple
systems.[3]. Lack of a standard process means that there are
risks to patient data privacy and data security.

Research in autonomous machine learning (AutoML)
has previously shown that many of the steps mentioned
above can be automated.[10] No-code ML goes a step further
than AutoML by providing a platform that empowers indi-
vidual users with the ability to independently and iteratively
train, validate, and deploy models without any programming
required.[11] In this paper we present a novel no-code ML
platform which allows physicians to create their own ML
models for radiology. While our focus is on medical imaging
(DICOM) data, the overall framework could be extended
to other types of healthcare data such as electronic health
records.

There are many reasons clinicians may want to develop
models. Previously several of us trained an in-house model
to identify improperly taken chest radiographs.[12] An early
version of the ML software described below was used to
train a classification model to classify mammography im-
age view (CC vs MLO) and laterality (L vs R) to check
for mistakes with the DICOM orientation tag (four classes
total). A DenseNet121 model (8 M parameters) was trained
on 1,789 mammography images downsampled to 128x128
pixels. The model achieved an average accuracy of 99.52%
on a test set of 665 images. Based on that initial success with
that codebase we then decided to develop it further into a no-
code system so that users without coding experience could
train similar models in the future.

The aforementioned model for mammography view clas-
sification is an example of a model for quality assurance.
Models can also be implemented to assist in the areas of
time-consuming, mundane tasks such as worklist prioriti-
zation/triage, the automation of time-consuming tasks such
as the segmentation, and even to assist with diagnosis.
Since our platform was developed in-house and the result-
ing models are only used internally, FDA approval is not
required for such models to be used clinically. The lack of
FDA approval for these models underscores the need for
careful internal validation and oversight. Recently Panch
et al. have argued that internal development of AI models

Figure 2: The interface for data labeling.

Figure 3: Flowchart of the inclusion and exclusion criteria for
the training, validation, and test datasets for the pilot study.

is a promising pathway for AI use in healthcare.[13] As
Panch et al. explain, hospitals have a strong obligation to
set up their own validation and monitoring infrastructure
regardless of whether models are developed internally or are
FDA approved.

We tested our platform by providing the system to re-
searchers at Massachusetts General Hospital. They ran a
pilot study which used the system to train a clavicle fracture
detection model for X-ray radiographs. Next we utilized the
system to train a model that can identify ultrasound image
frames that have baked-in personally identifiable informa-
tion (PII). The resulting model was successfully used to
remove images with PII in order to generate a fully de-
identified dataset for research purposes.

2. System overview
Figure 1 shows an overview of our system. To ensure

data privacy, the entire system is implemented on secured
platforms within the hospital firewall. The data from the clin-
ical vendor neutral archives (VNAs) may be de-identified
and transferred to a research VNA. Alternatively images may
be pulled directly from the clinical VNAs. During training
and inference imaging data is not saved to disk. A load
balancer insures that clinical operations are not effected by
any data pulls.
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Table 1
Summary of some previously published fracture detection models. (NS = Not specified)

Reference Fracture Sensitivity Specificity AUC 95% CI

Current study (patient level) Clavicle 91% 94% 0.97 0.96-0.98
Guermazi et al., 2022 [14] Clavicle 84% 83% 0.90 NS
Jones et al., 2020 [15] Shoulder & Clavicle 90% 91% 0.96 0.79-0.96
Ma et al., 2021 [16] 20 fracture types 85% 97% NS NS
Dupuis et al., 2022 [17] All fractures 96% 91% NS NS
Hayashi et al., 2022 [18] All fractures 91% 90% 0.93 0.88-0.97
Ashkani-Esfahani et al., 2022 [19] Ankle 99% 99% 0.99 NS
Raisuddin et al., 2021 [20] Wrist NS NS 0.98 0.97-0.99
Yoon et al., 2021 [21] Scaphoid 87% 92% 0.96 NS
Murata et al., 2020 [22] Spine 85% 87% 0.91 0.96-1.00
Mawatari et al., 2020 [23] hip 88% 72% 0.90 NS
Blüthgen et al., 2020 [24] Distal radius 64% 60% 0.80 NS
Cheng et al., 2020 [25] Hip fracture 98% 84% NS NS
Chung et al., 2018 [26] Proximal humerus 99% 97% 0.97 0.96-0.97

The no-code platform graphical user interface (GUI) was
written in TypeScript with a .NET core backend. Currently
only classification models are supported. Users can use
Nuance’s mPower software to search for studies to use and
then import a list of studies into the system. This includes
the ability to search by age and sex. A special GUI page for
for data labeling was developed using the eUNITY viewing
software to view images.

Users can also view the radiology text reports associated
with each study. Users can provide labels at the both the
study and image level. Once a training dataset has been
created, then a training run can be started. A special interface
was developed for training and model management. Training
occurs in Docker containers which are run on dedicated
virtual machines (VMs) with GPUs (NVIDIA A100s or
V100s).

The Docker container contains code which uses the
PyTorch ML framework and some functions from MONAI.
For inputs, the container takes in a configuration file in Java
Script Object Notation (JSON) format and a .csv file with
labels and optional custom splitting (into training, valida-
tion, and test datasets). During training the container queries
the hospital VNAs using Web Access to DICOM Objects
(WADO) to retrieve images. The images are fed into the
training on the fly. The trained model is saved in a local
output directory alongside training logs and the original
configuration .json file.

Training options can be modified by editing the JSON
config file (in the future a GUI for this may be provided).
While nearly all options in the system are configurable, the
default settings were carefully chosen so they should be
suitable for most applications.

The default model is a pretrained DenseNet201 archi-
tecture (20.1 M parameters), but the system supports many
models which are available from MONAI, such as Effi-
cientNet models, which use less compute.[27, 28] The user
must specify the number of classes and whether they are

doing exclusive classification, non-exclusive classification,
or regression.

By default both dropconnect[29] and dropout are used
with a conservative rate of 0.2 and the following types of
data augmentation are implemented - random rotations (-10
to +10 degrees), random zooms/crops (0.9 - 1.25x), random
flipping, and random elastic deformations. The amount of
elastic deformation is kept small as large deformations may
not be suitable for all applications. Several options for data
normalization are provided (clipping, rescaling, etc). Models
are trained using the Adamax optimizer algorithm,[30] with
weighted random sampling to improve performance in the
case of unbalanced training labels. The default batch size is
6 and the default learning rate is set low at 0.0005 to avoid
training instabilities. We use the well-known “reduce on
plateau” learning rate schedule, which reduces the learning
rate by a factor of 0.5 when the validation loss plateaus for 5
steps.

A key challenge in no-code ML is determining the cri-
teria for stopping training. If the model is trained too long
it will overfit, whereas if training is stopped too early the
model’s accuracy may not have reached the best possible
value. Since the validation loss can be very noisy we smooth
the validation loss using a moving average of width 5 iter-
ations. We stop the training when the smoothed validation
loss no longer decreases for 1500 iterations. The maximum
number of epochs is set to 400.

The system contains several options for train-validation-
test splitting. The default is to split the data by PatientID. The
splitting can also be done by site (hospital) which is stored
in the IssuerOfPatientID DICOM tag. Thus, data sources in
the test set can be different from those in the training set,
providing a form of “external” validation. Once a model has
been trained, it is run on the test set. The system returns
validation statistics, ROC curves, and a confusion matrix
(see fig. 3.3. The Youden index is used to determine the
optimal threshold for classification during inference.[31]
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Figure 4: ROC curves and AUCs for X-ray level (A) and patient level (B) clavicle fracture detection.

After a model has been trained and tested, new contain-
ers for inference may be spun up. Inference can be done
on historical data listed in a .csv or live-routing may be
configured. During live-routing the newly acquired scans
that match set critiera are routed to the container. Currently
live routing must be manually configured using a custom
C# script implemented in our Laurel Bridge Compass™ DI-
COM router. Any potential clinical use of models developed
with our framework requires approval by our AI governance
board and extensive period of validation with live data.

3. Pilot user study
3.1. Study design

Our institution review board (IRB) waived the written
consent requirement for our retrospective, Health Insurance
Portability and Accountability Act (HIPAA) compliant pilot
study. The study details provided below are presented in
conformance with the Checklist for Artificial Intelligence in
Medical Imaging (CLAIM).[32]

The study dataset was comprised of clavicle radiographs
from 2,039 adult patients (age > 18 years) sourced from 13
sites within our network including 10 hospitals, one urgent
care center, and two quaternary care centers. To identify
eligible radiographs for our study we used Nuance mPower
Clinical Analytics Search (Microsoft Inc.), a cloud-based,
commercial radiology reports search engine that integrates
radiology reports data from the sites included in our study.
The search key terms for identifying consecutive radiology
reports and radiographs with and without clavicle fractures
were “acute fracture” OR “no fracture” OR “displaced frac-
ture” AND “clavicle X-ray”. The search was limited to
clavicle radiographs performed between January 2016 –
December 2022. Both right and left clavicle radiographs
were included in the study. A post-doctoral radiology re-
search fellow (2 years of experience) reviewed all radiology
reports and radiographs to exclude clavicle radiographs with
incomplete anatomic coverage of clavicles, metal-related

artifact, prosthesis, or evidence of open reduction with in-
ternal fixation (𝑁 = 267). Non-clavicle radiographs (such
as shoulder and chest radiographs) with or without clavicle
fractures were not included in the study. A flowchart of the
inclusion and exclusion with training and test data has been
represented in fig. 1.

We exported radiology reports of the eligible radio-
graphs from the radiology report search engine with the
following data elements: radiology findings text, radiology
impression text, date of examination, name of the radio-
graphic procedure, site of radiographic acquisition, as well
as patients’ age and gender. We reviewed the radiology
reports and recorded the details of the presence of fracture
to establish the ground truth. For this initial pilot study the
data labeling was not done with the platform’s GUI. Instead,
the data labels were uploaded via a .csv file into the system.

To avoid selection bias, all consecutive clavicle radio-
graphs were included regardless of patients’ age, race, and
sex as well as radiographic equipment and site of acquisition.
Although a power analysis was not performed to determine
adequate sample size for our test set, our sample size was
larger than most prior publications in this domain. Clavicle
radiographs from three sites were marked for inclusion in an
external test dataset. The remaining radiographs were used
for training and validation.
3.2. Dataset and model

A total of 2,151 clavicle radiographs were used in the
training dataset, and 100 radiographs from were automat-
ically split to comprise the validation dataset. The default
settings described in section 2 were used. All radiographs
were resampled to a size of 512x512 and normalized to
have a mean of zero and standard deviation of one. After
model training and testing the platform returned statistics
for the performance of the AI model. The mean age (±
standard deviation) of 2039 adult patients included in our
study was 52 years. There were 1022 female patients and
1017 males. Site-wise distribution of patients was Site 1
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Figure 5: Model performance examples on frontal projection
radiographs of clavicles with AI-detected (true positive: A, B),
AI-missed (false negative: C, D), and AI-false positive (E, F)
clavicle fractures

(N=621 patients), Site 2 (N=651), Site 3 (N=166), Site 4
(N=40), Site 5 (N=223), Site 6 (N=167), Site 7 (N=43), Site
8 (N=11), Site 9 (N=6), Site 10 (N=36), Site 11 (N=37),
Site 12 (N=7), and Site 13 (N=31). Of the 2039 x-rays,
there were 1225 radiographs of the right clavicle and 814
left clavicle radiographs. Most patients were either outpa-
tients (N=1066) or in the emergency department (N=828),
with only 145 inpatients. Radiographs of 108 patients who
could not be automatically deidentified were excluded. 1,666
radiographs were used for model testing (772 radiographs
with clavicle fracture and 894 radiographs without clavicle
fracture) from two sites that did not contribute to the training
datasets. The test set included 826 patients total.
3.3. Results

The model trained until it achieved 89% accuracy on the
validation set. On the test set the model classified individual
X-ray images with clavicle fractures with 90% sensitivity,
87% specificity, 88% accuracy, 0.86 F1, and an area under
the reciever operating characteristic curve (AUC) of 0.95.
The model had 91% sensitivity, 94% specificity, 93% ac-
curacy, 0.91 F1, and an AUC of 0.97 (95% CI 0.96-0.98)
when classifying at the patient level (since some patients
had multiple images in their study, we average the softmax
predictions across the images for each patient and use that
as a ‘patient level’ classification). Receiver operating char-
acteristic (ROC) curves are shown in fig. 3. Comparison
with some previous models for fracture detection is provided
in table 1. Additional statistical analyses were performed
with SPSS. There was no significant difference in model
performance in male or female patients and among patients
in different locations at the time of their radiography (𝑝 >
0.05). For analysis, AI outputs were classified as true posi-
tive, true negative, false positive, and false negative. False
positive findings were noted in X-rays when the clavicle

Figure 6: Confusion matrix on a test set of ultrasound images.

had degenerative changes, skin folds, artifacts, and foreign
bodies such as post catheter overlying the clavicle. False
negative findings were present in both displaced and non-
displaced clavicle fractures. Examples of true positive, true
negative, false positive, and false negative outputs are shown
in fig. 3.2.

4. First use-case: identifying PII in ultrasound
images
The first use-case of the fully developed system was to

train a model to classify ultrasound images as to whether
they were “normal” images, “non-images”, or images with
burned in PII. Examples of these image types are shown in
figure 4. Ultrasound images with burned in PII are rare but
must be removed when creating fully de-identified datatsets
for research purposes. Previously this time-consuming pro-
cess was done manually.

To properly test the system, the model development was
done by a program manager with no technical coding knowl-
edge. Using the system a training set had 421 images (includ-
ing multiframe) were labeled. There were 62 “non-image”
images, and 37 images with PII. While these numbers are
small, the classification task is relatively easy due to the
large differences between the images types. The “normal”
images were DICOM MultiFrame images (sometimes called
“Enhanced DICOM”). The multiframe images contained
around 20-30 frames each. Since the system trains on all
frames, the total number of “normal” images was around
9,500.

The test set consisted of 12,981 ultrasound instances,
many of which were multiframe. Manually labeling the test
set with our GUI was found to be time consuming, so it
was done by downloading all of the data and viewing image
thumbnails. This enabled the dataset to be labeled within
hours rather than days. The confusion matrix is shown in
fig. 3.3. The overall accuracy was 0.9989. While the number
of demographics pages in the test set is small, these initial
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Figure 7: Examples of a standard ultrasound image frame (left), an ultrasound image which is actually a screenshot with PII
(middle), and an ultrasound image that is a “non-image” settings page. (PII has been redacted in black).

Figure 8: Screenshots of the data list (left) and ML model management pane (right).

results were encouraging enough that the model was used to
help de-identify a separate dataset for research purposes.

5. Discussion
Our study demonstrates that an internally developed no-

code ML platform give non-coding clinicians and personnel
the ability to develop AI classification models in a fast
and efficient manner. The performance of the clavicle frac-
ture classification model trained with our system is similar
or better than models reported in the literature (see table
1.[33, 34] For example, Guermazi et al. reported their AI
model for identifying shoulder and clavicle fractures had a
performance of 84% sensitivity, 83% specificity, and 0.90
AUC (95% CI 0.79-0.96).[14] Jones et al. reported on a deep
learning system for identifying clavicle fractures, using an
ensemble of 10 convolutional networks, which obtained 90%
sensitivity, 91% specificity, and an AUC of 0.96.[15]

The clavicle detection model pilot study has some no-
table limitations. First, there was an asymmetric distribution
of radiographs across different institutions and between the
radiographs with and without clavicle fractures. Second,

all clavicle radiographs belonged to a common healthcare
system in the same geographic location in the Northeast part
of the United States. Third, we did not assess variations in
the model performance across patients’ size, racial, or ethnic
groups. Fourth, as stated above, the successful creation of
a classification model for clavicle fractures does not imply
that the same no-code ML platform will be successful at
building sophisticated models or those for cross-sectional
imaging modalities. Furthermore, model performance on
different radiography techniques (i.e. computerized versus
digital radiography) was not assessed; however, considering
variations in equipment across the 14 hospitals, the model
was trained and tested on radiographs from several differ-
ent vendors. Likewise, due to the exclusion of radiographs
with incomplete anatomic coverage, artifacts, and prior open
reduction and internal fixation, we cannot comment on the
model performance on such radiographs. Finally, we also
did not assess the model’s performance in non-displaced
versus displaced fractures and for patients with chronic or
non-healed clavicle fractures. Despite these limitations, we
believe this model could improve the diagnostic accuracy
of fracture detection, especially in clavicle fractures without
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displacement that often pose a challenge to interpreting
physicians.

There are several avenues open to improving this system.
One thing that still needs to be implemented is better support
for cross validation. Currently cross-validation must be done
by providing a “fold" parameter in the config file. Then the
training runs for each fold have to be initiated manually, and
the metrics for each fold have to be averaged manually as
well. This process could be automated on the web platform
side. Next, the system could be expanded to work with
3D modalities such as CT or MRI. Since we have already
implemented training on multiframe images, this should
be easy to implement. A more substantial upgrade would
be to extend the system beyond classification to enable
segmentation and bounding box detection models to be
created. We have already extensively tested the Redbrick AI
(www.redbrickai.com) data labeling platform and integrated
it with our VNA. Redbrick AI provides an application pro-
gramming interface (API) which allows cohorts to be sent
the platform. On the platform users can create segmenta-
tion, polygon, and bounding box labels which can then be
retrieved via API. The image labeling platform could also be
updated to make labeling faster and easier in some situations,
for instance by implementing thumbnail views. Finally, in
the future this system could be further developed to allow
users to fine-tune multimodal transformer foundation mod-
els similar to GPT-4.

In conclusion, our no-code ML platform simplifies and
expedites the development of AI models for medical imag-
ing. It is our goal to make this system available to scientists,
physicians, and engineers within our healthcare system so
they can train models to assist in their everyday work.
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